
Abstract. We present in this paper a multi-reference
coupled cluster (MRCC) formulation for energy di�er-
ences which treats orbital relaxation and correlation
e�ects on the same footing, by invoking a novel cluster
ansatz of the valence portion of the wave operator Xv.
Unlike in the traditional normal-ordered exponential
representation of Xv, our new relaxation-inducing
ansatz, represented symbolically as Er�S�, allows con-
tractions between the spectator lines and also certain
other special contractions. By an extensive theoretical
analysis, taking as an example the case of one-hole
model space (the IP problem), we demonstrate that our
ansatz incorporates in a manifestly spin-free form the
orbital relaxation to all orders. The traditional Thouless-
type of exponential transformation via one-body excita-
tions can induce the same e�ect, as is done in the
valence-speci®c or the quasi-valence-speci®c MRCC
formalisms, but they have to be done in the spin-orbital
basis ± making the spin adaptation of the problem a
complicated exercise. In contrast, we use a spin-free
representation of the cluster operators right from start,
but expand the rank of the cluster operators by involving
spectator orbitals to distinguish the various spin possi-
bilities. The combinatorial factors entering the contract-
ed power series in Er�S� are chosen in such a way that
they correspond to what we would have obtained if we
had used a Thouless-like transformation to induce the
orbital relaxation. Our working equations generally have
only ®nite powers of the cluster operators S, resulting in
a very compact formulation of the relaxation problem.
Pilot numerical applications for the IP computations of
HF and H2O in the core, the inner valence and the outer
valence regions show very good performance of the
method vis-a-vis those obtained using the traditional
normal ordered ansatz for Xv. The improvement in the
core IP value is particularly impressive, although even
for the valence regions there is an overall improvement
of the IP values.

Key words: Multi-reference coupled cluster (MRCC)
theory ± Orbital relaxations in MRCC theory ± MRCC
theory for core holes ± Relaxation-inducing cluster
ansatz in MRCC theory

1 Introduction

Electron correlation plays a major role in shaping
diverse structural and spectroscopic properties. Often
the simple molecular orbital picture fails to provide even
a qualitative understanding of the experimental results.
A case in point is the breakdown of the orbital picture
in describing the inner valence ionization of molecules
[1±3]. In particular, to interpret the spectroscopic energy
di�erences, one has to account for the changes in the
correlation energy as well as the relaxation of orbitals
accompanying excitation or ionization, which demands
theories capable of providing a good description of the
di�erential correlation and the orbital relaxation e�ects.
For the core-hole ionization and excitation processes,
orbital relaxation is very important. The so-called direct
methods for computing energy di�erences seem some-
how superior to the traditional approach of computing
the total energies of the two states concerned, since in
the direct methods all the common correlation terms
cancel out in the energy di�erence, and an inherently
more accurate description of the di�erential correlation
and relaxation e�ects can be modelled. This is, for
example, the philosophy of many of the modern
methods for energy di�erences [1±15]. The advantage
of the direct method is predicated by the use of a
common set of orbitals to describe both the ground and
the excited/ionized states of interest, which implies that
one would require an e�cient and compact treatment of
the orbital relaxation e�ects when the situation so
demands, as for example in the core-excitation and
core-ionization processes, but without explicitly chang-
ing the orbitals. There is also a concomitant combined
interplay of di�erential correlation and orbital relax-
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ation e�ects, both of which may be important, as for the
core-hole satellites and in the inner valence region. This
poses a real challenge to electronic structure theory. We
propose to present and apply in this paper a coupled
cluster theory for an e�cient non-perturbative treatment
of the relaxation and di�erential correlation e�ects via the
use of a novel cluster ansatz of the wave operator. We will
illustrate the basic thrust of our formulation by taking as
an example the case of the one-hole problem, viz. the IP
computations. A comprehensive general formulation will
be given in a forthcoming article in near future.

Although the propagator-based methods have been
generally successful in the inner and outer valence ion-
ization processes, they warrant a special innovation to
handle orbital relaxation e�ects [16±18] for core holes.
The resulting methods have rather complex structures
and have not been as widely used as the more traditional
variants for the inner and outer valence regions. The
coupled-cluster-based linear response theories [4, 7, 10,
14] and the closely related SAC-CI approach [2, 3] also
have mostly considered the inner and outer valence re-
gions. These methods also would require considerable
expansion of the operator space than is traditionally
invoked to give a good account of the relaxation e�ects
accompanying core ionization (e.g., see schemes envis-
aged in [19] and [20]). Special care is also needed for core
IPs for other approaches [21±24]. The traditional
valence-universal multi-reference coupled cluster theory
(VU-MRCC) [5, 11±13], for energy di�erences, using the
valence-universal normal ordered cluster ansatz for the
wave operator, treats electron correlation e�ects to high
accuracy but fails to take complete account of the orbital
relaxation e�ects (vide infra, Sect. 2.3). Conversely, the
valence-speci®c MRCC (VS-MRCC) theory [25], using
separate exponential representations of the components
of the wave operator acting on each model determinant,
treats both the correlation and the orbital relaxation
e�ects on the same footing, since the latter is brought
out via the Thouless correction involving single excita-
tions from the model functions [26]. The VS-MRCC
theory, however, is tailored to compute state energies
per se, and not energy di�erences. The use of the
Thouless-like correction can nevertheless be exploited in
energy di�erence calculations too, as shown by Mu-
khopadhyay and Mukherjee [27], by formulating a
coupled-cluster theory with the ansatz for the wave op-
erator as advocated for the valence-speci®c theory, but
extending the scope of the formalism to encompass en-
ergy di�erences involving states with di�erent numbers
of electrons, as in ionization. This quasi-valence-speci®c
MRCC theory (QVS-MRCC) has been found to suc-
cessfully tackle the relaxation e�ects. However, this
method has the technical disadvantage in that the gen-
eration of a proper spin-free form of the QVS-MRCC
equations is cumbersome, since the use of multiple vacua
implies in general the use of non-singlet vacuum func-
tions. This makes the cluster amplitudes dependent on
spins. As a result, they have to be represented in a spin-
orbital basis. In contrast, the VU-MRCC method with a
®xed closed-shell vacuum renders the spin adaptation a
very simple exercise. In the VU-MRCC theory, in ad-
dition to having true n-body excitation operators of rank

n, there are also rank n operators which induce only
(nÿ m)-fold excitations, since they involve m � n spec-
tator orbitals. The various direct and exchange ampli-
tudes for these pseudo n-body operators take account
of the possible di�erent m-fold excitations that would
be present in the VS- or the QVS-MRCC theories writ-
ten in the spin-orbital basis.

What is obviously needed is the ¯exibility in the spin
adaptation of the VU-MRCC approach, but to incor-
porate the Thouless-like correction as permitted by the
QVS-MRCC formulation [27]. A preliminary formula-
tion towards achieving this goal was initiated by Mu-
khopadhyay et al. [15] some years ago, using an ansatz
which takes care of the relaxation e�ects. In this paper,
we develop a di�erent, more general and more compact
formulation, using a new ansatz for the valence portion
of the wave operator, Xv. Our relaxation-inducing the-
ory is a major improvement over the method proposed
earlier [15], which led to the emergence of diagrams with
contractions between the cluster operators in a chain-
like fashion. This made the resultant MRCC equations
both quite lengthy and potentially non-terminating. In
our formulation, we propose a new relaxation-inducing
cluster expansion which allows a ®nite power series ex-
pansion of the MRCC equations. The generation of the
®nite power series MRCC equations warrants a careful
classi®cation of the terms into strongly and weakly
connected entities. The strongly connected entities have
all the cluster operators connected to the hamiltonian
vertex, by at least one line other than the spectator lines.
It turns out that this ansatz is the exact equivalent of the
QVS-MRCC formulation [27] in the context of the
single-vacuum-based formulation.

The relaxation-inducing cluster expansion of the
wave operator for ionized/excited states we are going to
introduce in this paper makes an implicit use of the
Thouless type of exponential transformation [26], but
invokes a di�erent structure of the transforming opera-
tor ± in a manifestly spin-free form in the framework of a
single vacuum. Although the theory is general with re-
spect to the number of valence (active) electrons present
in the systems, for the present we will apply the theory to
the single-valence core- and valence-ionization process-
es, using only one active orbital to illustrate the for-
malism. Thus although ours is an MRCC formulation,
we shall currently use it with only one reference function
in the model space.

The paper is organized as follows. The main
theoretical ideas leading to the relaxation-inducing
transformation are summarized in Sect. 2, where a multi-
determinantal generalization to Thouless parametriza-
tion using a single vacuum is discussed. The algebraic
correspondence of our cluster ansatz with the multi-
exponential ansatz of the QVS-MRCC theory is also
discussed in the same section. In Sect. 3, we generate
from the Bloch equation for the energy di�erences a
connected set of MRCC equations for the cluster am-
plitudes. With our choice of Xv, we have a chain of
contractions of the cluster operators with spectator lines.
We also show here that by a careful classi®cation of the
various terms in the MRCC equations into what we call
the strongly and the weakly connected entities, we can
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transcribe the parent set of equations containing both
the strongly and the weakly connected terms in favour of
another having only strongly connected entities. The
latter set has only a ®nite power series expansion of the
cluster operators. Section 4 contains the ®rst molecular
applications of the theory for the core- and the valence-
ionization processes. Section 5 contains the concluding
remarks.

2 Towards a relaxation-inducing cluster ansatz

2.1 Multi-determinant generalization
to Thouless parametrization: pro and contra issues

Thouless [26] showed the way to handle the orbital
relaxation e�ects without explicitly changing the orbitals
via an exponential of a one-body operator acting on a
determinant whose orbitals we want to relax. According
to Thouless, when the exponential of a one-body
operator acts on a determinant /, it results in another
modi®ed determinant /0, non-orthogonal to /, with
altered orbitals, i.e.

/0 � exp�S1�/ �1�
where

S1 �
X

pc

Sp
c aypac �2�

The Greek labels refer to the occupied and the Latin
labels refer to the unoccupied orbitals in /. Though the
theorem is used for a single determinant for orbital
relaxation, this theorem can be generalized in a straight-
forward manner to transform a combination of deter-
minants w to a similar combination w0, having altered
orbitals in each determinant. The multi-determinant
Thouless theorem can be described as

w0 � Xw �3�
X �

X
a

exp�S1a�j/aih/aj �4�

where

w �
X

a

/aCa �5�

Using Eqs. (3)±(5), we then ®nd the actual form for w0:

w0 �
X

a

/0aCa

�
X

a

exp�S1a�/aCa �6�

S1a involves all possible single hole-particle excitations
out of /a. We also note at this stage that if we now add
the higher-rank cluster operators Sna with n � 2, then
we introduce correlation e�ects and this coincides with
the ansatz used by Jeziorski and Monkhorst (JM) [25]
of the wave operator in the VS-MRCC theory. We thus
see that the orbital relaxation is a built-in feature of the
JM ansatz. Unfortunately, the JM ansatz has two
important limitations: (1) it is traditionally used only

for obtaining the state-energies per se and not in
computing energy di�erences as the VU-MRCC does;
(2) the ansatz has a simple structure only in the spin-
orbital basis ± its spin adaptation turns out to be pretty
non-trivial [28].

The ®rst limitation is easily remedied [27] by formu-
lating the QVS-MRCC theory where one ®rst determines
the cluster operator T for the closed-shell ground state:

H exp�T �/ � E0 exp�T �/ �7�
where / is the singlet determinant of the neutral system.
We can write the Bloch equation of the energy
di�erences in terms of the transformed hamiltonian �H ,
given by

�H � exp�ÿT �H exp�T � ÿ E0 �8�
The Bloch equation for the energy di�erences can then
be derived using the following ansatz for X:

X � exp�T �Xv �9�
where Xv is the valence portion of the wave operator,
which brings about the extra correlation and relaxation
e�ects:

Xv �
X

a

exp�Sa�j/a ih/aj �10�

If we write the exact functions of the excited or ionized
states wK as

wK �
X

a�1;N
exp�Sa�/aCaK �11�

then the Bloch equation for the energy di�erences
E ÿ E0 � DE can be expressed as

�H
X

a�1;N
exp�Sa�/aCaK � DE

X
a�1;N

exp�Sa�/aCaK ; 8a;K

�12�
for an N -dimensional model space. This can be equiv-
alently written as

�HXvP � Xv
�HeffP �13�

�Heff � P �HXvP �14�
The situation regarding a spin-free formulation turns
out to be much more non-trivial in this formulation. We
explain the basic issue here by again taking our example
case of the single ionization, but considering just one
determinant /a � aa/. The di�culty shows up even
in this case. Let us assume that /a has a vacancy in the
spin orbital a with up spin. If we consider the single
excitations from core orbitals to particle orbitals, then
we discern that an excitation c! p and the spin-reversed
counterpart �c! �p will have di�erent excitation ampli-
tudes in the exact function, since they see an exchange
potential contributed by the spin orbital a with up spin.
As a result, we will not be able to express the amplitudes
of the single excitation operators in spin-free form using
the spin-free generator of the unitary group. We need
two such operators, depending on spin. The situation
is the same for higher-body excitations. Herein lies
the principal di�culty with the JM representation, even
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when the formulation is extended to handle the energy
di�erences [27].

On the other hand, using the closed-shell determinant
/ as the vacuum, we can get around the di�culty by
invoking the spectator orbital a for the hole. So, instead
of a one-body operator for single excitation in a spin-
orbital basis, we use a two-body operator to induce the
single excitation, where the other orbital scatters the hole
vacancy in a to itself. Since this can be done in both the
direct and the exchange modes, we will have two dif-
ferent amplitudes and this resolves both the spin de-
pendence of the cluster operators and the freedom of
retaining two amplitudes of the two single excitations,
viz. for up and down spins. For the higher-body oper-
ators, the situation is entirely analogous. This procedure
of spin adaptation is routinely used in VU-MRCC for-
mulations (e.g. see [5]), and has also been used by us
previously [15]. We want to exploit this simpli®cation
also in the framework of a relaxation-inducing formal-
ism. This aspect is further discussed below.

2.2 A spin-free representation
of the excitation operators in VU-MRCC theory

Let us assume that all the excitation operators are
independent of spin. Let us introduce two single
excitation two-body amplitudes spa

ca and spa
ac . The former

scatters the spectator orbital a in direct mode, while the
latter scatters it in the exchange mode. It can be shown
by straightforward veri®cation that the action of the
two-body single excitation operators involving excita-
tions c! p and �c! �p can be expressed in terms of two
distinct amplitudes. Thus, spa

cafaypayaaaacg � spa
cafaypayaacaag

on /a will generate �spa
ca ÿ spa

ac �/a,while s�pa
�cafay�payaaaa�cg will

generate just s �pa
�ca /a. These two coe�cients accompanying

/a are thus e�ectively di�erent. We should note here
that we cannot have an exchange excitation amplitude
for �c! �p owing to our assumption of spin independence
of the excitation amplitudes.

From the above discussions, it may appear that there
exists a simple recipe by which we can transcribe the JM
ansatz in a spin-free form by way of invoking spectator
orbitals, and using formalisms akin to a QVS-MRCC
theory. This unfortunately is not the case. The normal
ordering ansatz for the wave operator traditionally used
in the VU-MRCC theory does not allow full exponential
representation of the relaxation-inducing terms. This
aspect was recognized and discussed by Mukhopadhyay
et al. [15] earlier, who formulated the ®rst relaxation-
inducing ansatz. To keep the continuity, we brie¯y dis-
cuss the limitation of the normal ordered ansatz here,
taking again as an example the singly ionized state /a. It
is enough that we consider the action of the wave op-
erator on just the function /a.

The normal ordered ansatz for Xv will have the single
excitation operators of the types spa

cafaypayaaaacg and
spa
acfaypayaacaag, etc., appearing in the exponent of a nor-
mal ordered exponential. Each of these operators has
one hole destruction operator for the orbital a. We want
these operators to introduce multiple single excitations

on /a in a way exactly analogous to what exp�Sa� would
have done in the JM ansatz in Eq. (6). The normal or-
dering ansatz has many advantages, but giving the full
exponential expansion involving the relaxation terms is
not one of them. Since no S operators can be contracted
among themselves in a normal ordered exponential, the
linear term of the normal ordered expansion already has
one destruction operator for the hole a, the second
power would have two hole destruction operators for the
hole, and so on. Moreover, /a has only one hole, so that
the action of the second and higher powers of S would
give trivially vanishing contributions by their actions on
/a. As a result, we would get just the linear term cor-
responding to the single excitation from /a, and not
products of single excitations needed for the full orbital
relaxation, as can be easily done with the JM ansatz. In
the general n-valence problems, the normal ordering will
cause the expansion of the normal ordered exponential
to terminate at the nth power. What is obviously needed
is the requirement that we want the operators in Xv with
the spectators to contract among themselves, and to
generate exactly the same combinatoric factors as an
exponential would have done. Mukhopadhyay et al. [15]
introduced one such ansatz in their attempt to account
for the relaxation e�ects. However, the combinatoric
factors in the various terms in the contracted operators
were not conducive to generate a compact expression of
the working equations. As a result, their equations were
somewhat unwieldy, containing a non-terminating chain
of terms with S-S contactions where many S operators
were not joined to the hamiltonian vertex at all. We shall
introduce a new relaxation-inducing ansatz, which fa-
cilitates a reduction of the MRCC equations to compact
expressions for the working equations involving only a
®nite power series expansion of the cluster amplitudes.
We will discuss these aspects in Sect. 3. Presently we
discuss the theoretical considerations motivating such
a choice.

2.3 Towards the relaxation-inducing Er�S� ansatz

As emphasized earlier, we want our relaxation-inducing
ansatz to have the same physical content as a multi-
exponential representation of the JM ansatz as used in
the QVS-MRCC theory, but which will work within the
framework of a single closed vacuum, as in the VU-
MRCC theory. The ansatz will also be general in the
sense that it would treat both the di�erential correlation
and orbital relaxation on the same footing. We specialize
to the singly ionized state only in this paper.

Let us classify the various operators that enter Xv in
terms of the physical e�ects they induce. For the con-
creteness of presentation, we con®ne ourselves to, at
most, two-body operators, though this can be easily
generalized for higher-body terms. All the S operators
are written in normal order with respect to the closed-
shell ground state /. There is only one kind of one-body
operator. This excites a hole in an orbital which contains
an electron, and ®lls in the hole present in the model
function /a. Obviously it contains no spectator line, but
it does involve a. We call this operator as S1. The two-
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body operators require careful classi®cation. There are
single excitation two-body operators which have spec-
tators ± either as direct spectator scattering or in an
exchange mode. They induce orbital relaxations, and we
will call these operators as S2r. We want the operators S1

and S2r to be present in Xv in all powers, with comb-
inatoric factors as in an exponential expansion. The rest
of the two-body operators, to be henceforth called as S2c,
are genuine double excitations which introduce correla-
tions appropriate to ionized states. We consider the
single excitations ®rst, which bring in the orbital relax-
ations. As emphasized earlier, the normal ordered ex-
ponential exp�S�, acting on /a, will terminate the series
after the ®rst power. We replace this ansatz by another
which allows contractions between the single excitations.
Thus typical terms in our new ansatz for Xv should allow
contractions of the types shown in Fig. 1. Figure 1a
shows contractions between two two-body operators S2r
with a as the spectator orbital. For simplicity, only the
direct types of spectator scatterings are shown, though in
actual implementation both direct and the exchange
spectator operators would be allowed to contract.
Figure 1b shows a similar contraction, which involves the
single excitation from S1 with a two-body S2r. Our new
ansatz for Xv must allow chains of such contractions to
be done to all powers. This then would entail the
same types of terms as an exponential of one-body
excitations would have allowed on /a in a JM ansatz, as
in Eq. (6).

We now look carefully at the combinatorial factors
that should accompany these chains of contractions. To
discern these, we formally try to relate our ansatz using
/ as the vacuum to the corresponding expression where
/a is taken as the vacuum. In other words, we want to
transcribe the power series expansion of S in Xv, written
in normal order with respect to / as the vacuum to one
which is written with respect to /a as the vacuum. In the
latter form, we want to get the exponential ansatz of JM.
Thus we want to associate those factors in our con-
tracted terms which, on transcription, will give the fac-
tors appearing in an exponential. Such a transcription
changes the role of a from that of a hole in / to a particle
when /a is taken as the vacuum. The Wick's theorem
reordering the terms with the vacuum taken as /a would
generate two terms. One is the operator in normal order
with respect to /a, and the other with the orbital a
contracted. The ®rst term has a destruction operator for
the orbital a (remember that a is a particle in /a now!),
whose action on /a would be zero. So, the non-trivial
operator after the new normal ordering would be the
second term, where the orbital a is contracted. This is
however now a one-body operator. These one-body op-

erators with a contracted are depicted in Fig. 2. For the
term in Fig. 1a, we would have the non-vanishing term
as a product of two such one-body operators as shown
in Fig. 2a. They are, as expected, the second power of
two one-body operators. They can appear in two dif-
ferent ways in the exponential representation in the JM
ansatz, so that the exponential expansion attaches a
factor 1=2! corresponding to the number of ways we can
arrange the two vertices. Clearly, it is possible to have
the contractions of the two two-body operators in Fig.1a
also in two di�erent orderings. Thus in our new ansatz,
if we associate the factor 1=2!, corresponding to the two
ways the two operators in the two arrangements can be
contracted, then the correct combinatorial factor will
emerge when we attempt to rewrite our expansion of the
powers of S written with respect to / as vacuum to
another with /a as vacuum. The situation is tricky and
di�erent for the term of Fig. 1b. In this case, we can join
the one-body operator only from the left. A transcrip-
tion of this term to another in normal order with respect
to /a would generate the term of Fig. 2b. In the expo-
nential representation it should appear in two ways: (1)
the order in which it appears and (2) another in which
they appear in the reversed order. We now realize that
the second term cannot appear from our ansatz, since
the contraction in the reversed order is not possible in
Fig. 1b. However, in the exponential representation in
the JM ansatz, the two operators shown in Fig. 2b
commute, so we may represent the two terms as just one,
appearing in the way they do in Fig. 2b, but with a factor
1 rather than the customary 1=2!. This resolves our
problem: we should attach a factor 1 to our Fig. 1b,
corresponding to the number of ways we can join the
two vertices. Thus our combinatorial factors in the
power series representation of Xv are not as in an ex-
ponential: they are rather equal to the inverse of the
number of ways the vertices can be contracted among
themselves in the various distinct manners. If the two
vertices are equivalent, then there is one distinct mode of
joining, and this should be kept in mind. This analysis is
quite general.

If we now include the correlation terms on top of the
single excitations, we would have to allow the spectator
line going to the left of a relaxation vertex to contract
with any line in an operator Sc carrying the labels of the
spectator. Thus, we allow contractions like the ones we
have in Fig. 1a, but with the ®rst vertex now an S2c, with
a line labelled other than a as it emerges to the left. Such

Fig. 1a, b. Connections allowed in the new ansatz Er�S� for Xv

Fig. 2a,b. Transcription of the terms of Fig. 1 drawn using / as the
vacuum to a set using /a as the vacuum
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vertices would thus be genuine double excitations S2c.
Since the line coming out on the left would not have the
label a on it, we would not be able to contract the two
vertices in the reverse order. As a result, we would attach
a factor 1 for such contractions.

For more than one model functions, the situation is
essentially the same. We would then have S operators
with one active line entering from left of each vertex
which are labelled by the active lines a, b, etc. We allow
the vertices with same spectator labels to contract
among themselves, and also allow those to contract from
the left which have to their right a line with the same
label. It is straightforward to verify that it will generateP

a exp�Sa�/a if we transcribe our power series for each
operator with the spectator orbital labelled by a in terms
of normal ordered terms taking the corresponding /a as
the vacuum.

Thus we invoke the following ansatz for the relax-
ation inducing cluster expansion of Xv:

Xv � Er�S� �15�
S �

X
ai

Sai �16�

Er�S� � 1�
X

a

X
i

Sai �
X

ij

1=fijfSaiSajg
"
�
X
ijk

1=fijkfSaiSajSakg

�
X
ijk

1=fijfSaiSajSakg
#
� � � � �17�

where Sai denotes a speci®c operator with the spectator
a. Each term in the expansion of Er in Eq. (17) above is
in normal order with respect to /. The factors fij, fijk ,
etc., are the number of ways the associated S operators
can be contracted among themselves. Er�S� can be
equivalently written as a normal ordered exponential
involving another cluster operator r:

Er�S� � fexp�r�g �18�

r �
X

a

X
i

Sai �
X

ij

1=fijfSaiSajg
"

�
X
ijk

1=fijkfSaiSajSakg
#
� � � � �19�

We note here that r is a connected operator. r in general
contains a non-terminating chain of S-S contractions in
it. The only terms which terminate are those where there
is a contraction from left of an S vertex with no
spectator orbital, as in Fig. 1b. As a result, a straight-
forward use of Xv in terms of r in Bloch equation will
generate a non-terminating series in S. In the next
section we will discuss the MRCC equations obtained
from our ansatz for Xv. Written in terms of r, they
involve in general a chain of S-S contractions. By
classifying the various terms appropriately, we would
eventually generate another set where only a ®nite power
series of S appears.

3 The emergence of Bloch equation using
the Er�S� cluster ansatz

3.1 Generation of MRCC equations
with non-terminating chain of terms

Adducing the same arguments as were invoked in the
traditional VU-MRCC theory [5, 8], with normal
ordered Xv [13], we ®nd the energy and the amplitude
®nding equations for S from the ansatz for Xv in Eq. (16).
Using the alternative representation, Eq. (18), for Xv, in
the Bloch equation, Eq. (14), we have

f �H exp�r�gexP � fexp�r� �HeffgexP �20�
which are the set of equations for S. �Heff is given by

�Heff � f �H exp�r�gcl �21�
where ``ex'' and ``cl'' denote the excitation and the closed
parts of an operator [13]. For the ionization problem,
the model space P is spanned by the singly ionized
functions /a.

Since we consider here only one active orbital, the
relevant terms in the equations above are the ones
with only one active line entering from the right for

each composite. Calling the quantities f �H exp�r�g and

fexp�r� �Heffg as X and Y , respectively, the relevant
portion of the Bloch equation can be written as

X �1�ex � Y �1�ex �22�
where the superscript indicates the valence rank [13] of
the composites. The e�ective hamiltonian matrix for
computing the energy di�erences is obtained as

�Heff � PXP � X �1�cl �23�
Since both the operators are connected, and involve the
connected entity r, the equations are connected and our
theory is size extensive. X and Y are, however, de®ned
with respect to the composites of S in r, and are thus
non-terminating series in general of S. In contrast, if we
had used the JM ansatz, as in the earlier QVS-MRCC
formalism [27] for the same problem, we would have
obtained the following equations for S and �Heff:

f �H exp�Sa�ga�ex�j/ai
�
X
b6�a

fexp�ÿSa� exp�Sb�g�ex�j/bi� �Heff�ba �24�

� �Heff�ba � h/bjf �H exp�Sa�gaj/ai �25�
which have a totally di�erent algebraic structure. The
notation f� � �ga denotes an operator in normal order
with respect to /a. The entity on the left side of the
equation contains a connected term where all Sa
operators are connected to �H . This then has a ®nite
power series structure since �H has ®nite number of
creation/annihilation operators in it. It has no chain-like
non-terminating series. The term on the right side of the
equation can in principle be non-terminating, but in
practice for a truncation in the rank of S it would still be
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terminating, but this has contractions among the Sa and
Sb operators. Since our ansatz for Xv is algebraically
analogous to the JM ansatz, we should be able to
transcribe our equations to a form similar to Eqs. (24)
and (25) above, leading to a much more compact
structure of our working equations.

Achieving this is the other key innovative part of our
formalism. Our intention is to transcribe these equations
into another set where each X -like term has all the
cluster operators connected to �H , thus resulting in a
®nite power series expansion of the cluster operators
for this entity in the transcribed MRCC equations. For
the Y -like operators containing �Heff we may have terms
with a chain-like contracted series, as in the right side of
Eq. (24). It turns out that this transformation demands
the algebraic structure of the wave operator to be as
invoked by us in this paper ± the earlier ansatz proposed
by Mukhopadhyay et al. [15] does not allow the sought-
after transcription of the MRCC equations.

The transcription is best followed by classifying the
diagrams of X and Y into strongly and weakly connected
terms. A strongly connected term is one in which all the
cluster operators are connected to �H by at least one line
other than just the spectator lines. They may, in addi-
tion, have connections among themselves. A weakly
connected term, by contrast, is one in which either some
cluster operators are connected in a chain-like fashion to
other cluster operators but these are not directly con-
nected to �H , or in which some S operators are joined to
�H by just the spectator lines, or both. We want to
eliminate the weakly connected terms in favour of
equivalent strongly connected terms, by proceeding hi-
erarchically from the MRCC equations of lower particle
ranks to those with higher particle ranks. The resulting
equations are much more compact than the parent ones.
In the general theory with several functions in the model
space, we ultimately obtain a set of equations with only
strongly connected terms of the X type, but there are
generally weakly connected terms in the portion in-
volving �Heff. This feature of our MRCC equations is
exactly analogous to the one in the multi-vacua formu-
lation, viz. in Eq. (24). The left side of Eq. (24) is a
connected series, while the right side involves commu-
tators of Sa with Sb, and thus generally have S terms
connected to other S, but not to �Heff.

We will again illustrate the relevant manipulations
using the one-valence problem as an example. Further-
more, in the case of a one-valence problem with just one
model space function, the case we are explicitly consid-
ering in this paper, the transcribed Bloch equation does
not even contain any weakly connected terms at all. This
is again exactly analogous to what is expected from
Eq. (24): when there is only one model function /a, the
right side of Eq. (24) is zero.

3.2 Transcription to a strongly connected series

In what follows, it will be convenient to express the
Bloch equation in terms of the two strongly connected
quantities Z and W . Z is a connected composite of the
external type where all the S operators are strongly

connected to �H from the right. W is a closed operator
of similar structure. Any arbitrary diagram of X and
Y variety can then be written as either a Z or a
W connected weakly to various other S operators. In the
chain of S operators in a given diagram, some are
directly connected to �H . The rest are weakly connected.
The S vertices which have spectator lines can be
connected anywhere in the chain if the chain has
spectator orbitals at both the ends. Such a chain is of
the type of Fig. 1a. If the left-most weakly connected
vertex has no spectator line to the left, then all the other
S operators with spectator lines can be connected
anywhere on the right of this left-most S. All these
various terms are topologically equivalent, and give the
same contribution. We keep in this case just one among
all these weakly connected diagrams, and multiply it by
the number of ways the S operators could have been
placed in the chain. A good point of our formalism is
that these topological factors are just the weights fij
introduced in the de®nition of Er�S�, and cancel the
inverses stemming from Er�S�. To uniquely specify
which among these diagrams we wish to keep, we use
the following convention: if, in the chain, there are
spectator lines at both ends, then we choose only that
diagram which has all the S operators with spectators
placed at the extreme left end of the chain. If the chain
has no spectator lines to the left of the chain, as in Fig.
1b, then we keep them to the extreme right. We illustrate
this aspect diagrammatically by showing two topologi-
cally equivalent terms where there are spectator lines at
both the ends in the set of weakly connected diagrams.
Figure 3 shows two such equivalent diagrams that can be
generated. We keep only the one where the weakly
connected S is at the extreme left end of the spectator
line. The topological weight 2, corresponding to the
number of ways the two S operators can be joined,
exactly cancels the factor 1=2 coming from Er�S�.

The resultant composite X for the one-valence
problem is always of the following four forms: Z con-
nected weakly to Sr, W connected weakly to Sr, Sr con-
nected weakly to Z and Sr connected weakly to W .
Similarly, Y can always be represented as S operators
connected weakly with a W , and S operators connected

Fig. 3. Topologically equivalent diagrams and the convention of
choosing one of them multiplied by a topological weight illustrated
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strongly with a W . In order to represent these various
terms, we introduce a subscript in the operators which
indicates the type of linking: strong or weak. Every S
operator has at least one active line to its right. If it has
no such active line to its left with the same label, the
particular S has no spectator lines, and it is enough if we
indicate its linking to a Z or W by a subscript s or w
indicating its strong or weak linking. Obviously, these
types of S operators are either S1 or the correlation
operators Sc. Those with the spectators would generally
need two subscripts to indicate its connection with other
operators both to its left and to its right. This is true for
all the Sr operators. The composite Z may or may not
have spectator orbitals to its left. If it has this, Z is of the
shape of the relaxation operators Sr, henceforth denoted
as Zr, and would need two subscripts. If it does not have
a spectator line to its left, it is either of the shape of S1,
or of the Sc of the correlation type. We use the symbols
Zs and Zw to indicate whether the active line from the left
is attached directly to �H or to an S, respectively. For
the example of the one-valence problem, W is just a
one-body closed operator.

Construction of the working equations may be made
easier by working in terms of diagrams and classifying
them into various blocks. We shall represent the Z and
W operators as diamond shaped vertices. The lines
which are directly connected to the �H vertex are shown
as joined to the middle portion of the diamond or a large
circle, those joined to other S vertices (i.e. weak con-
nection) are shown as connected to the diamond from
below. As examples of the diagrams constituting the
blocks, we show in Fig. 4 some typical diagrams of W
and Z. The spin adaptation in these diagrams is quite
trivial: we merely multiply each diagram by a factor of 2
for each loop.

With these notations, the equations for the one-body
S can be symbolically written as

Z1s � Z1w � S1wWww ÿ S1sWss ÿ S1sWsw ÿ S1wWww � 0

�26�
The third term should carefully be noted. It stems from
an X where S1 can connect weakly to an S operator in X .
By our convention, we have kept the weakly connected S
to the left-most part of the chain. We have already
encountered a typical diagram of this structure in
Fig. 3(II). This term exactly cancels a similar folded
term stemming from Y , viz. the last term. Cancelling
these two terms explicitly, we have

Z1s � Z1w ÿ S1sWss ÿ S1sWsw � 0 �27�
The equations for S2r can be similarly written as

Z2rss � Z2rsw � Z2rww � S2rwWww � WswS2rw

ÿ S2rsWss ÿ S2rsWsw ÿ S2rwWww � 0 �28�
In these equations, the fourth and the last term cancel,
so that we have the simpli®ed equations

Z2rss � Z2rsw � Z2rww � 0 �29�
The equation for Sc is given by

Z2s � Z2w � �Z1s � Z1w�S2rw � S1wZ2rww

� S2cwWww � S1wS2rwwWww ÿ S2csWss

ÿ S2csWsw ÿ S1wS2rwsWss ÿ S1wS2rwsWsw

ÿ S2cwWww ÿ S1wS2rwwWww � 0 �30�
The ®fth and the eleventh and also the sixth and the last
terms cancel among themselves. We are still left with
weakly connected terms after this cancellation. The
equation for Sc now requires careful substitution
from Eqs. (27) and (29) generated above to obtain a
strongly connected expression. Substituting the expres-
sion of Zs � Zw in the above equation from those in Eq.
(27), the weakly connected terms all cancel and we get a
strongly connected series. The resultant equation reads
as

Z2s � Z2w ÿ S1sZ2rss ÿ S1sZ2rsw ÿ S2csWss ÿ S2csWsw � 0

�31�
Figure 5±7 display the equations for S operators in terms
of the blocks. Figure 5(I) has an active line attached to
�H , while Fig. 5(II) and Fig. 5(III) have active lines
connected to other S operators. Similarly, Fig. 5(I0) has
the active line attached to �H , while the line emerges from
an S vertex in Fig. 5(II0).

We should mention here that we would have a similar
set of equations for the exchange part of S2r. Equation
(27), the direct and exchange types of Eq. (29) and
Eq. (31), is the principal working equation of our MRCC

Fig. 4a±c. Typical diagrams entering the one-body blocks are
shown: a shows the block of Z1sw; b shows the block of Z1ww;
c shows the block of Www
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theory. Sine each block described above contains an �H ,
and several S-vertices, the MRCC equations are coupled
simultaneous equations in the amplitudes of S.

The above reduction procedure generating the
strongly connected terms from the weakly connected
chain of expressions is quite general, and will be shown
in detail in our future communications.

In our pilot applications, we have not included a set
of terms which are cubic in power in the cluster ampli-
tudes. A more detailed and complete applications of our
formalism will be published in near future.

4 Computational implementations

We have applied our formalism to compute the IPs for
both the core and the inner- and the outer-valence
ionizations for HF and H2O at the equilibrium geometry
of the molecules. We have utilized the correlation
consistent basis [29±31] in our calculations. To assess
the importance of orbital relaxations, we have also
computed the IPs with the standard MRCC theory using
normal ordered cluster ansatz fexp�S�g [5] to compare
with those obtained from the Er�S� method. As we have
emphasized repeatedly in this paper, the fexp�S�g ansatz
can take care of the orbital relaxation e�ects in only a
very incomplete manner. The performance of the
two methods is assessed by comparing the results with
experimental IP values. Since in the present formulation
we have used only one model function /a, W is just a
number ± rather than a matrix ± and is the IP for the
problem. For computing the various IPs involving the
core or an inner- or an outer-valence orbital, we have
taken each such orbital in turn as the active orbital a.

4.1 HF molecule

For HF, we have used the correlation-consistent basis
with the contraction scheme, (4S1P)//[3SIP] for the
hydrogen atom and (9S5P1D)//[5S3P1D] for the ¯uorine
atom [29, 31]. The Hartree-Fock orbitals of the neutral
HF at the equilibrium bond length of 1.7328 a.u. are
used in our calculation. An excellent estimate of the
extent of just the orbital relaxation for the core can be
obtained by doing another restricted Hartree-Fock
calculation for the core- ionized state. The DSCF value
for core-IP is thus calculated as 693.9042 eV. A com-
parison with the experimental results (694.0 eV) (as
quoted in [15]) indicates that orbital relaxation is the
dominant e�ect for the core IP of HF.

The results are displayed in Table 1. The IP values
from the Er�S� theory are uniformly closer to the
experimental values as compared to those from the
fexp�S�g formalism. The improvement is particularly
dramatic for the core IP, although there is also a sub-
stantial improvement for the IPs computed for the
valence region. Comparison between the fexp(S)g and
Er�S� results indicates that the direction of changes for
the core IP and the valence IPs are opposite, although
both for the core IP and the valence IPs the changes
brought about by the Er�S� method are always in the
correct direction.

4.2 H2O molecule

The H2O molecule is isoelectronic with HF. We have
again used the correlation-consistent basis, with the
contraction scheme (5S1P)//[3S1P] for the hydrogen
atom and (11S6P1D)//[5S4P1D] for the oxygen atom
[30, 31]. The bond length of the OAH bond in the
equilibrium geometry of H2O of 1.80885 a.u. and the
�HOH of 104:524� have been used for our calculations.

Fig. 6. Block diagrams appearing in the equation for S2r

Fig. 7. Block diagrams appearing in the equation for S2c

Fig. 5. Block diagrams appearing in the equation for S1
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The DSCF value for the core IP is 539.0250 eV, which ±
compared to the experimental core IP of 539.7 eV ±
implies that this ionization also is dominated by
relaxation. The results of our calculations are displayed
in Table 2. The trends observed are again very similar to
those observed for HF. There is again a dramatic
improvement of the core IP as predicted by the Er�S�
method as compared to that from the fexp�S�g method.
Again the changes are in the opposite direction for the
valence IPs compared to that for the core IP. However,
the changes always bring in better correspondence with
the experimental values [21, 34].

We have thus demonstrated that our pilot numerical
applications illustrate the e�cacy of the Er�S� method to
tackle both the strong orbital relaxation and the di�er-
ential correlation e�ects with equal facility. The im-
provement in the prediction of the core IP is particularly
impressive, which is dominated by orbital relaxation.

5 Summarizing remarks

We have presented in this paper an MRCC formulation
for energy di�erences which can treat the orbital
relaxation e�ects to all orders. This is accomplished by
invoking a new cluster ansatz of the valence portion of
the wave operator Xv. Unlike in the traditional normal-
ordered exponential representation of Xv, our new
relaxation-inducing ansatz, represented symbolically as
Er�S�, allows contraction between the spectator lines. It
also treats correlations systematically to the same degree
of sophistication, which calls for certain other contrac-
tions to be allowed as well. By a detailed theoretical
analysis, taking as an example the case of one-hole
model spaces (the IP problem), we demonstrate that our
ansatz incorporates in a manifestly spin-free form the
orbital relaxation to all orders. The traditional Thouless-
type of exponential transformation via one-body excita-
tions can induce the same e�ect, as is done in the
valence-speci®c or the quasi-valence-speci®c MRCC
formalisms, but they have to be done in the spin-orbital
form, making the spin adaptation a rather involved
problem. In contrast, we use a spin-free representation
of the cluster operators right from the start, but use

spectator orbitals to distinguish the various spin possi-
bilities. The combinatoric factors entering the contracted
power series in Er�S� are chosen in such a way that they
correspond to what we would have obtained had we
used a Thouless-like transformation to induce the orbital
relaxation. Our working equations generally have only
®nite powers of the cluster operators S, resulting in a
very compact formulation of the relaxation problem.
Pilot numerical applications for the IP computations of
HF and H2O in the core, the inner valence and the outer
valence regions show very good performance of the
method vis-a-vis those obtained using the traditional
normal ordered ansatz for Xv. The improvement in the
core IP value is particularly impressive, although an
overall improvement is observed in the valence regions
as well.
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